
M1 Internship Report

On Recoloring of d-Degenerate Graphs

Ni Luh Dewi SINTIARI
Laboratoire de GSCOP (Institut Polytechnique de Grenoble)

May 22 - August 25, 2017

Supervised by: Nicolas BOUSQUET, Aurelie LAGOUTTE

Abstract

Graph recoloring problem consists in transforming a given proper (vertex) coloring
of a graph into another given proper coloring by changing the color of exactly one vertex
in each step, while still maintaining the properness of the coloring. On the class of d-
degenerate graph, it is known that this is always possible when the number of colors is
k ≥ d + 2. However, the numer of steps to do such a tranformation can be exponential.
It has been proved that when k ≥ 2(d + 1), there exists a transformation using O(n)
steps where n is the number of vertices in the graph. This article presents a method
of tranformation on a specific class of d-degenerate graphs, namely the class of d-paths.
We aim to achieve the better lower bound on k while maintaining the linear number of
steps on this class of graphs. In particular, we will prove the following: any two colorings
of a d-path using k ≥ 2d + 1 colors can be transformed one into each other in at most
((2d+1)2+18)n steps. This method can be extended to a larger subclass of d-degenerate
graphs, namely the class of d-trees, which is a superclass of d-paths.

1 Introduction

1.1 Coloring, Recoloring, and Connectivity of Recoloring Graph

Reconfiguration problems consist in finding step-by-step transformations between two feasible
solutions such that all intermediate results are also feasible. One of the graph problems that
can be investigated as a reconfiguration problem is vertex coloring. Cereceda et al. [1]
formally initiated the investigation of the reconfiguration of graph colorings.

We recall some basic notions of graphs. In this paper, we restrict our discussion to the
class of simple undirected graphs. An undirected graph G is an ordered pair G = (V,E) where
V is the set of vertices (some authors may call it nodes) together with a set E of edges which
is a subset of unordered pairs of vertices. An undirected graph G is called simple if it does
not contain any loop or multiple edge. Moreover, for any vertex u and v, we say that u is
adjacent to v if uv ∈ E. In this case, u is a neighbor of v and vice versa. The set of neighbors
of v is denoted by N(v). For a set S ⊂ V , N(S) =

⋃
s∈S

N(s)\S is the set of neighbors of the

vertices in S. Some other terminologies about graphs that are used in this paper are given in
the Appendix.

Given a graph G, an integer k, and a set of colors
{

1, 2, ..., k
}

, a k-color assignment of G

maps every vertex of G to a color in
{

1, ..., k
}

. A k-color assignment is said to be a (proper)
k-coloring, if no two adjacent vertices receive the same color. If G has a k-coloring, then G
is called k-colorable. The chromatic number χ(G) of a graph G is the smallest value of k
such that G admits a k-coloring. The graphs having chromatic number equals to k is called
k-chromatic graphs.

1

Definition 1.1. Let G be a k-colorable graph. The k-recoloring graph of G, denoted by
Rk(G), is the reconfiguration graph whose set of vertices consists of all possible k-coloring
of G, with two k-colorings joined by an edge in Rk(G) if and only if they differ in color on
precisely one vertex of G.

Roughly speaking, for two vertices uα, uβ of Rk(G) which correspond to two k-colorings
α and β, uα and uβ are adjacent in Rk(G), if α and β differs on exactly one vertex. Note
that two colorings equivalent up to color permutation are distinct vertices in the recoloring
graph. Two vertices uα and uβ are connected in Rk(G) if there exists a sequence of step-by-
step transformation from α to β. This sequence of transformation is called reconfiguration
sequence, and it corresponds to a path that goes from uα to uβ . Recall that a graph G is
said to be connected if any two of its vertices are linked by path. In terms of connectivity,
we say that G is k-mixing if Rk(G) is connected. Having that Rk(G) is k-mixing means that
for any k-coloring α and β, there exist a reconfiguration sequence transforming α into β, and
vice versa.

A simple way to prove that a graph G is not k-mixing is to exhibit a frozen k-coloring
of G, namely a k-coloring of G in which all vertices are adjacent to vertices of all other
colors. Such a coloring becomes an isolated vertex in Rk(G). Deciding whether a graph is
k-mixing is PSPACE-complete for k ≥ 4. Indeed, Cereceda et al. [1] gave two equivalent
characterizations of 3-mixing bipartite graphs and proves that deciding if a given bipartite
graph is 3-mixing is coNP-complete. In addition, Cereceda et al. [1] show that when k =
χ(G), then G is not k-mixing for k ∈

{
2, 3
}

. On the other hand, for all k ≥ 4 there are
k-chromatic graphs that are k-mixing, and k-chromatic graphs that are not k-mixing.

The complexity of finding a reconfiguration sequence for given two k-colorings also receives
a considerable attention. This problem turns out to be solvable in polynomial time for k ≤ 3.
Bonsma and Cereceda give a polynomial time algorithm for exhibiting a path between the
two 3-colorings, if it exists. For any k ≥ 4, examples have been explicitly constructed where
any reconfiguration sequence between two colorings has exponential length. In a recent work,
Johnson et al. [5] showed that even finding the shortest reconfiguration sequence, is solvable in
polynomial time for k ≤ 3. The case k ≤ 3 is, in some sense, is a little bit surprising since the
underlying decision problem of determining whether a graph is 3-colorable is NP-complete.

This problem leads us to the question of determining the recoloring diameter of Rk(G) (see
Appendix for graph diameter), which will be denoted by diam(Rk(G)) for a given k-mixing
graph G. This diameter gives an upper bound on the length of the best reconfiguration
sequence for any pair of k-colorings α and β. Nevertheless, diam(Rk(G)) may be polynomial
for some well-structured class of graphs, for example when we restrict to graphs of bounded
degeneracy.

1.2 Background and Motivation

The question of connectivity of a k-recoloring graph has been observed by researchers in the
statistical physics community under the name of Glauber dynamics of an anti-ferromagnetic
Potts model at zero temperature. This research has a tight relation with rapid mixing of
Markov chains used to obtain efficient algorithms for almost uniform sampling of k-colorings
of a given graph. Consider a Markov chain (P,Ω,Π) where P denotes the transition matrix,
Ω denotes the state space, and Π denotes the unique stationary distribution. Recall that the
variation distance between two distributions µ, ν on Ω is defined as dTV (µ, ν) = 1

2

∑
x∈Ω

|µ(x)−

ν(x)|. We are interested in the mixing time Tmix defined as the time to get close to the
stationary distribution, Tmix = max

x∈Ω
min t : dTV (P t(x, ·),Π(·)) ≤ 1

e .

For a graph G and a value of k, denote the Glauber dynamics for the k-colorings of G by
Mk(G) = (Xt)

∞
t=0. The state space of Mk(G) is the set of k-colorings of G, the initial state

X0 is an arbitrary coloring, and its transition probabilities are determined by the following
procedure.

1. Select a vertex v of G uniformly at random.

2. Select a colour c ∈
{

1, 2, ..., k
}

uniformly at random.

2

3. If recoloring vertex v with color c yields a proper coloring, then set Xt+1 to be this new
coloring. Otherwise, set Xt+1 = Xt.

The relation between Mk(G) and k-recoloring graph of G is that a simulation of the chain
corresponds to a walk in Rk(G), since two k-colorings α, β of G form an edge of Rk(G) if and
only if Pr(Xt+1 = β|Xt = α) > 0, in which case Pr(Xt+1 = β|Xt = α) = 1 · k|V |. In this
case, Mk(G) is irreducible if and only if G is k-mixing. Thus the fact that a graph is k-mixing
is a necessary condition for its Glauber dynamics Markov chain to be rapidly mixing. For
further discussion about this topic, the readers can refer to [1].

1.3 Some Known Results

Chordal graph is a graph containing no induced cycle of length more than 3 (see Appendix).
A graph G has degeneracy d if and only if there is an (elimination) ordering v1, v2, ..., vn of its
vertices such that for 1 ≤ i ≤ n, the vertex vi has at most d neighbors in

{
vi+1, vi+2, ..., vn

}
.

In this case, we say that G is d-degenerate. In this paper we will call such an ordering as vertex
ordering. Moreover, in the following discussion, the naming of the vertices always based on
its vertex ordering.

Theorem 1.2. (Cereceda et. al., [1]) For a d-degenerate graph G with n vertices and k ≥
d+ 2, recoloring graph Rk(G) is k-mixing.

The theorem says that for any two given k-colorings of G using at least (d + 2) colors,
there always exists a recoloring between them. However this method gives an exponential
number of steps [1]. In particular, Cereceda et. al. [1] gives an upper bound for the diameter
of recoloring graph, as stated in the following lemma.

Lemma 1.3. (Cereceda et. al., [1]) For any d-degenerate graph G with n vertices, and every
k = d+ 2, diam(Rk(G)) ≤ n(d+ 1)n.

Proof. By induction on the number of vertices, we will prove that any given two k-colorings
α, β of G can be transformed one into each other by recoloring every vertex at most (d+ 1)n.
Since G is d-degenerate, then there exists a vertex ordering v1, v2, ..., vn. Let G′ be the
subgraph induced by V \v1. Note that G′ is still d-degenerate. Let α′, β′ be the restriction of
α, β respectively to G′. By induction hypothesis, α′ can be transformed into β′ by recoloring
every vertex of G′ at most (d+ 1)n−1. Hence, when including the vertex v1 of G, everytime
we need to change the color of a vertex u ∈ N(v1), then we may have to change the color
of v1 beforehand. Hence, during the transformation of α′ into β′, since the degree of v1 in{
v2, v3, ..., vn

}
is at most d, then we would have to change the color of v1 at most d(d+1)n−1 <

(d + 1)n, and in the last step, we may have to change the color of v into β(v) if necessary.
Thus, to transform α into β, every vertex have to be recolored at most (d+ 1)n. Since there
are n vertices, the number of steps is at most n(d+ 1)n.

We are interested in obtaining a better upper bound on the number of required steps for
transforming any k-coloring of d-degenerated graphs. The conjecture by Cereceda et. al. [1]
below is well-known.

Conjecture 1.4. (Cereceda et. al., [1]) For any d-degenerate graph G and every k ≥ d+ 2,
diam(Rk(G)) = O(n2)

No general result is known so far on this conjecture, but this conjecture was proven to
be true on some particular classes of graphs, for example on d-degenerate chordal graphs, as
stated in Theorem 1.5.

Theorem 1.5. (Bonamy et. al., [2]) For every d-degenerate chordal graph and every k ≥ d+2,

diam(Rk(G)) = O(n2)

3

Sketch of proof. In their proof, Bonamy et. al. introduced the notion of k-color-dense graphs,
that is a class C of k-colorable graphs in which every graph G ∈ C satisfies either (i) or (ii)
of the following (again, the readers can check Appendix for undefined terminologies).

(i) G is the disjoint union of cliques, each of which has at most k vertices

(ii) G has a separator S, and G − S has components D and D′ with vertices u ∈ D and
v ∈ D s.t.

(a) |D| = 1 or |D ∪ S| ≤ k
(b) S ⊆ N(v), and

(c) identifying u and v in G results in a k-color-dense graph G′

Then they showed that for k ≥ 1 and l ≥ k+1, any k-color-dense graph G on n vertices satis-
fies diam(Rk(G)) ≤ 2n2. Furthermore, they also showed that for fix k ≥ 1, every k-colorable
chordal graph is k-color dense. Hence knowing the fact that a chordal graph has degeneracy
d if and only if it is (d+ 1)-colorable, we can conclude the proof. The readers should refer to
[2] for the complete proof.

The lower bound on the number of colors k of Theorem 1.5 is necessary. Indeed, on a
complete graph with d vertices, and k = d+ 1, then Rk(G) is not k-mixing, since all vertices
of Rk(G) are isolated. Moreover, the upper bound on the diameter cannot be improved, for
instance on paths (Bonamy et. al. [2]). In other words, one may need a quadratic number of
steps to transform a 3-coloring of a path into another 3-coloring.

In addition, Bousquet and Perarnau [4] gives a lower bound on k that yields linear diameter
of the recoloring graph, for the class of d-degenerate graph, as stated in the following theorem.

Theorem 1.6. Bousquet, Perarnau, [4] For every d-degenerate graph G and every k ≥
2(d+ 1), then diam(Rk(G)) ≤ (d+ 1)n.

Proof. The proof goes by induction on the number of vertices. Let G be d-degenerate graph,
and α, β be two k-colorings of G. Since G is d-degenerate, then there exists a vertex ordering{
v1, v2, ..., vn

}
. Furthermore, let G′ be the subgraph of G induced by V \v1,. Clearly, G′ is

still d-degenerate, and with vertex ordering
{
v2, v3, ..., vn

}
. Let α′, β′ be the restriction of α, β

on G′. By induction hypothesis, α′, β′ can be transformed one into each other by recoloring
every vertex at most (d+ 1) times.

Now consider again the initial graph G, and include v1 during the transformation from
α′ into β′. At each step of the recoloring process, let some vertex u is recolored from color
a into b. If u /∈ N(v1) or v1 is not currently colored with b then we are done, as we do not
need to perform any recoloring on v1, so the coloring is still proper in G. The worse case, if
u ∈ N(v1) and v1 is currently colored with b, then we have to add some recoloring steps to v1

before we can recolor u with b. Let t1, t2, ..., tl be the steps in the recoloring sequence when
a vertex u ∈ N(v1) is recolored, and let ct be the new color assigned to it at time t. Assume
that the bad case happens at time ti, with i ≤ l. Note that, in order to maintain the proper
coloring, we have to assign to v1, a color distinct from the colors in N(v1) which contains at
most d colors (because the degree of v1 is at most d). So, we have at least k − d ≥ d + 1
choice of colors for v1. Hence we can assign to v1, a color c /∈

{
cti , cti+1 , ..., cti+d−1

}
. By this

recoloring, then v1 will not require any recoloring before time ti+d in the sequence.
Let ti1 , ..., tis be the recoloring steps of v1 in the original sequence. Obviously, ij+1− ij ≥

d + 1 for all j < s. Note that l ≤ (d + 1)d because deg(v1) ≤ d and every vertex in V \v1

requires at most (d + 1) recolorings. Moreover, is ≤ l because the recoloring times of v1

can not exceed the recoloring times of N(v1). It yields that s ≤ d. Therefore, during the
transformation of α′ into β′, we will only recolor v1 at most d times. At the end of the
procedure, we may need to recolor v1 into β(v1) if necessary, which means that v1 is recolored
at most (d+ 1) times during the transformation from α into β.

4

Cereceda et al. [1] also observed the graph recoloring diameter on classes of graphs with
bounded treewidth, namely d-degenerate graphs of treewidth d are (d + 2)-mixing. Then
Bonamy and Bousquet [3] proved that the recoloring diameter for bounded treewidth graphs
is polynomial, as stated in the following theorem.

Theorem 1.7. Bonamy, Bousquet, [3] For every graph G having treewidth tw(G), and every
k ≥ tw(G) + 2, then diam(Rk(G)) ≤ 2(n2 + n).

1.4 Problems, Results, and Outline

Knowing that for k ≥ 2(d + 1), the graph recoloring of d-degenerate graph G has a linear
diameter, we may be curious to know whether the diameter is still linear if we reduce the
number of colors k. Determining precisely for which value the diameter becomes linear is a
central question for physicists who want to generate a coloring at random. In this paper, we
are going to analyse if we can achieve a better lower bound on the number of colors k, in
which the number of steps needed to transform any pair of k-coloring of d-degenerate graphs
into any other is linear. A simple class of d-degenerate graphs that can be a good start is the
so-called class of d-paths.

In this paper, we discuss some algorithms for recoloring a d-path G. We try to improve
the lower bound of k in terms of d in which the number of steps needed for the recoloring
is linear in n. In particular, we prove that for the class of d-paths, there exists step-by step
transformation to transform a k-coloring into another k-coloring within a linear number of
steps. We state it formally in Theorem 1.8. Furthermore, we also show that this result can be
extended to the superclass of d-paths, namely the class of d-trees, as we will state in Theorem
1.9.

Theorem 1.8. Let G be a d-path of n vertices and k = 2d+ 1, and γ, δ be any k-coloring of
G. Then γ, δ can be transformed each other in at most (4d2 + 4d+ 13)n steps.

Theorem 1.9. Let G be a d-tree of n vertices and k = 2d+ 1, and γ, δ be any k-coloring of
G. Then γ, δ can be transformed each other in at most (4d2 + 16d+ 11)n steps.

We find a good lower bound for some ”special” colorings of d-paths (we will explain it
more clearly in Section 3). However, the lower bound on k that we obtain in the Theorem 1.8
is still not good enough, as it is only one value lower than the bound given by Bousquet and
Perarnau in [4]. In addition, the proof of Theorem 1.8 and Theorem 1.9 is algorithmic, so we
have a step-by step transformation to transform any two k-colorings one into each other.

This paper is organized as follows. Section 1, as the readers have seen, contains the
introduction of our problems. In Section 2, we give some basic terminologies about graphs
and some notations that will be used in the whole paper. We also define some recoloring
technics and present some algorithms to recolor certain types of recolorings on d-paths. Later
in Section 3, we give our main results that have been described previously. In the end, the
Appendix provides some basic concepts about graph theory. We also provide some examples
to illustrate the recoloring technics that we have implemented.

2 Preliminaries

In this section we give some basic terminologies and notations that are used in the whole
paper. We also discuss some basic properties that are important to prove our result.

2.1 Basic Terminologies and Notations

We will start by analysing our problem on subclasses of d-degenerate graphs, namely the class
of d-degenerate paths (or d-paths). An example of d-path can be seen in Figure 1.

Definition 2.1. A d-path is a graph created from a single path (or 1-path) by adding edges
between each two vertices which are at distance at most d on the path.

5

Figure 1: A 3-path with 9 vertices

In the following discussion, we will assume that G is k-colorable for some value of k that
will be specified later on. Moreover, we can assume that G is connected, otherwise we can just
consider it as a disjoint union of connected graphs, then do the recoloring on its connected
components. For a k-coloring α of G, the color of a vertex v in G is denoted by α(v). We
say that a k-coloring β is a target coloring if we want to recolor G with β. In this case, for
any vertex v ∈ V , the color β(v) is called the target color of v. Now fix a vertex u ∈ V . We
say a vertex v ∈ N(u) is u-good if it is not currently colored with β(u), the target color of u.
Otherwise, we say v is u-bad. Furthermore, we also define a notion of frozen vertex. That is,
a vertex v that can not be recolored by any color (because N(v) ∪

{
v
}

uses all the colors).
Otherwise, we call it unfrozen. In this case, a color that can be used to recolor a vertex v is
called v-free color. Note that a d-path G is (d+ 1)-colorable as following the vertex ordering
of G, we can always color vertex vi by the color that does not appear in its d neighbors of{
v1, v2, ..., vi−1

}
.

Let G be a d-path. First, for simplification, assume that |V | = n = kl for some integer
k, l. We give an order to the vertices of G based on the degeneracy. We take a vertex v1

with degree at most d, then in each step, we take a vertex vi that is adjacent to vi−1 s.t.
|N(vi) ∩

{
v1, ..., vi−1

}
| ≤ d. For the vertex ordering (v1, v2, ..., vn), we will say that vi+1

is on the right of vi and vi−1 is on the left of vi. Based on its ordering, we denote the
vertices as V =

{
u1

1, u
1
2, ..., u

1
k, u

2
1, u

2
2, ..., u

2
k, ..., u

i−1
1 , ui−1

2 , ..., ui−1
k

}
. In this case, the subset

wi =
{
ui1, u

i
2, ..., u

i
k

}
of V for i ∈

{
1, 2, ..., l

}
is called a k-block (or just a block) of G. Hence,

a d-path with kl vertices has l blocks of length k, and vertex uij is the jth vertex of the
block wi. Furthermore, two vertices vt, vt′ are said to have ordering distance equals to D if
t′ − t = D. For example, the ordering distance of vertex ui1 and uik is k. In addition, d(α)
denotes the minimum over the ordering distance in the vertex ordering of any pair of two
vertices that are colored with the same color in α.

Consider a block wi of G. A sub-sequence of vertices of wi is called sub-block of wi. For
any block wi, and any integer m ∈

{
1, 2, ..., k

}
, the m leftmost (resp. rightmost) vertices of

wi is called the m-prefix (resp. m-suffix) of wi. Furthermore, for any vertex uij of G, NL(uij)

and NR(uij) denote the set of neighbors of uij before and after uij (respectively) in the vertex
ordering. Let α be a k-coloring of G, we can write α as w1|w2|...|wl where w1, w2, ..., wl are
the coloring of the blocks w1,w2, ...,wl respectively. Let α be a k-coloring of a d-path G, S
be the sequence of the vertex ordering of G, and S′ be a sub-sequence of S. The sequence of
colors in α that are used to color the subgraph H induced by S′ is called the pattern of α on
H. For instance, wi is the pattern of the block wi for i ∈

{
1, 2, ..., l

}
. In the Definition 2.2,

we present two types of ”special” colorings on a d-path.

Definition 2.2. Let G be a d-path that is currently colored with a k-coloring α, where every
k-block of G is colored with exactly k colors.

(i) α is said to be symmetric if every block of G has the same pattern.

(ii) α is said to be almost symmetric if the d-suffix of every block of G has the same pattern.

An example of almost symmetric and symmetric coloring on a d-path is given respectively
in Figure 2 and Figure 3 (the dashed lines indicate the blocks).

Definition 2.3. Let G be a d-path.

(i) Two symmetric colorings α, β is said to differ by one transposition, if α(uij) = β(uij+1)

and α(uij+1) = β(uij) for every i ∈
{

1, 2, .., l
}

and a fixed value j ∈
{

1, 2, ..., k− 1
}

, and
they agree on all other vertices.

6

(ii) A block w of G is said to has a nice coloring, if the d-suffix of w has pattern
(k − d+ 1, k − d+ 2, ..., k).

An example of two symmetric colorings that differ by one transposition is given in Figure
3 and Figure 4. In this example, the symmetric 6-colorings α1 and α2 on 3-path differ by one
transposition as the color 3 and 5 are switched.

Remark 2.4. Up to the color permutation, in the next following sections, we will assume
that in symmetric coloring, every block of α has pattern (1, 2, ..., k), and in almost symmetric
coloring, the d-suffix of every block of α has pattern (k − d+ 1, k − d+ 2, ..., k).

2 1 3 4 5 6 3 2 1 4 5 6 3 1 2 4 5 6

w1 w2 w3

Figure 2: A 3-path colored with an almost symmetric 6-coloring

2 1 6 5 3 4 2 1 6 5 3 4 2 1 6 5 3 4

w1 w2 w3

Figure 3: A 3-path colored with a symmetric 6-coloring α1

2 1 6 4 2 1 6 4 2 1 6 43 5 3 5 3 5

w1 w2 w3

Figure 4: A 3-path colored with a symmetric 6-coloring α2

2.2 Tools: Some Recoloring Methods on d-Paths

In the following subsection, we present some recoloring algorithms that will be used to recolor
a d-path. We say that a k-recoloring method is proper if in each step of the recoloring, the
coloring is a proper k-coloring of G. Note that a k-recoloring is proper on a d-path only if
k ≥ d+ 1.

Definition 2.5. A right-chain-recoloring up to a vertex vend (similarly, left) on a d-path G
(that is currently colored with α) is a recoloring that is started by recoloring the vertex vj
of G with a vj-free color, then following the vertex ordering (v1, v2, ..., vn) of G, in each step,
vertex vj+1 which is the vertex after vj in the ordering, is recolored with α(vj) which is the
former color of the vertex vj , and the recoloring stops in vertex vend (i.e. this vertex is the
last vertex recolored). Similarly, the left-chain-recoloring starts by recoloring a vertex vj then
following the ordering, at each step, vj−1 is recolored with the former color of vj .

Remark 2.6. We say that we apply a right-chain-recoloring (similarly, left) by skipping a
vertex vt if after recoloring the vertex vt−1, we recolor the vertex vt+1 (instead of the vertex
vt) with the former color of vt−1. Note that it is possible to skip more than one vertex.

An example to illustrate this recoloring is given in Example A.1.

Proposition 2.7. Let G be currently colored with α. The right-chain-recoloring up to a
vertex vt (similarly, left) is a proper recoloring method if d(α) ≥ d+ 2.

7

Proof. First of all, note that this bound is necessary. Imagine that if G has a pair of vertices
vj , vj′ of ordering distance less than or equal to (d + 1) that are colored the same, then we
will not be able to recolor vj+1 with α(vj) because vj′ ∈ N(vj+1) is currently colored with
α(vj). Furtermore, if d(α) ≥ d + 2, then everytime we recolor a vertex vj+1 with α(vj), we
will only reduce the value of d(α) by at most one, i.e. the ordering distance of any pair of
vertices that are colored the same is at least (d+ 1). Hence, it still gives a proper coloring.

Proposition 2.8. Let α be a k-coloring of G and vi, vi+D be two vertices that are colored
with a same color c and no vertex vi + t with 0 < t < D colored with c. Then when applying
right(left)-chain-recoloring, we can skip the vertices vi+1, vi+2, ..., vi+D−(d+2).

Proof. Based on Proposition 2.7, in order to maintain the proper coloring of G, in each step,
we have to preserve the value of d(α) to be at least (d + 1). In this case, recoloring vj with
α(vi) still preserves the property, hence the proposition follows.

We recall one result of Bonamy and Bousquet [3] as stated in the following lemma. Let
us call this recoloring method a clique-recoloring.

Lemma 2.9. Bonamy, Bousquet, [3] For k ≥ n + 1, any two k-coloring α, β of a complete
graph Kn can be transformed one into each other by recoloring every vertex at most twice.

Proof. Let α, β be two colorings of the complete graph Kn, where the graph is initially colored
with α. Our goal is to recolor it into β in such a way that every vertex is recolored at most
twice. We build a digraph D with V (D) = V (Kn) and for any edge uv ∈ E(Kn), uv is an
arc of D if α(v) = β(u), i.e. if v prevents the recoloring of u into its target color. Note that
as all the vertices of Kn are colored differently both in α and β, then for any v ∈ V (Kn),
its out-degree d+(v) ≤ 1 (resp. in-degree d−(v) ≤ 1), otherwise there will be more than one
vertex that are colored with β(v) (resp. α(v)). Hence, D is a disjoint union of directed paths
and circuits.

In order to recolor a directed path P = (v0, v1, ...vm), we start by recoloring vm with
its target color (note that as d+(vm) = 0 then no vertex is being colored with β(vm)). It
yields that d+(vm−1) = 0 because vm is no longer colored with β(vm−1). We do it iteratively
until we finish the recoloring on P . In the end we will have that every vertex of P is an
isolated vertex in D. Now, to recolor a circuit C = (v0, v1, ...vm, v0), as we have k ≥ n + 1
then there exist a v0-free color c to recolor vertex v0. Thus now we have a directed path
C ′ = (v0, v1, ...vm) and we can apply the similar strategy as on the path P . Note that in this
case, we will recolor the vertex v0 twice. In the end of the Algorithm, we will have recolored
all the directed paths and circuits of D. It yields that Kn is colored with β. Moreover, in
this transformation, every vertex is recolored at most twice.

Remark 2.10. Lemma 2.9 holds for any graph G of n vertices in which the initial coloring
α and the target coloring β are colored with exactly n colors of k ≥ n + 1 available colors.
This is obvious as the coloring α and β on G will be a proper coloring of Kn. We can even
extend the Algorithm into the coloring of an induced subgraph of G having some particular
properties, as stated in Proposition 2.11.

Proposition 2.11. Let H be an induced subgraph of a graph G, α, β be two k-colorings of G,
and α′, β′ be the restriction of α, β in H. Let α′(H), β′(H) be the set of colors used in α, β
respectively, and C = α′(H) ∪ β′(H). Assume that in both α′ and β′, all vertices are colored
differently and no vertex in N(H) use any color of C. If |C| ≥ |H| + 1 then α′, β′ can be
transformed one into each other by recoloring every vertex at most twice.

Proof. As no vertex in N(H) uses any color of C, and V (H) are colored differently in α′, β′,
then we can obey the colors of N(H) and apply simple coloring as in Lemma 2.9.

8

In the following, we provide a method to transform an almost symmetric k-coloring α into
a symmetric coloring β. In order to transform it, we will first transform α into an intermediate
k-coloring γ by applying Algorithm 1, then we will transform γ into β by applying Algorithm
2. We remind you that when transforming γ into β, we will make every block has a nice
coloring, consecutively from the leftmost block. We will explain roughly what we are doing
here, then we will explain it more carefully in the next discussion. This intermediate coloring
has a nice property, that when a block w1,w2, ...,wi−1 have pattern 1, 2, ..., k, then we will be
able to apply clique-recoloring on the (k − d− 1)-prefix of wi such that the pattern becomes
1, 2, ..., k − d − 1. Then, we will have k − d as a uik−d-free color, and we can recolor uik−d
with k − d and apply right-chain-recoloring up to the vertex uik so that wi will have pattern
1, 2, ..., k.

Now note that as α is almost symmetric, then it might be the case that d(α) = d+1 < d+2,
i.e. there exists some pairs of vertices colored with the same color within ordering distance
d+ 1. Let call such pair of vertices a disturbing pair.

Definition 2.12. An intermediate k-coloring of a d-path G is a k-coloring such that every
block wi has pattern: (ci1, ..., c

i
k−d−1, (k−d+1), ..., k, cik) where (ci1, ..., c

i
k−d−1) are (k−d−1)

different color of
{

1, 2, ..., k − d
}

, and cik ∈
{

1, 2, ..., k − d− 1
}

.

Algorithm 1: Transforming an Almost Symmetric k-Coloring
into an Intermediate k-Coloring on a d-Path G

Input: Almost symmetric k-coloring of G
Output: Intermediate k-coloring of G

Recolor ulk with 1, then apply left-chain-recoloring starting from ulk up to u1
k−d by

skipping some vertices according to the following rules.

for i ∈
{

2, 3, ..., l
}

do

if (ui−1
k−d, u

i
1) is a disturbing pair then

skip vertex ui1
if α(ui2) = (k − d) then

skip also ui2 and recolor v with α(ui3)
end

else
if α(ui1) = (k − d) then

skip vertex ui1
if α(ui2) 6= α(ui−1

k−d) then
skip also ui2

end

end

end

end

Theorem 2.13. Algorithm 1 is a proper recoloring method for d-path with n vertices. More-
over, each vertex is recolored at most once.

Proof. We will prove the first statement. Let G is initially colored with an almost symmetric
k-coloring. Let wi−1,wi be two consecutive blocks in G containing a disturbing pair. We
recall that wi−1||wi is numbered as follows

ui−1
1 , ..., ui−1

k−d, u
i−1
k−d+1, ..., u

i−1
k ||u

i
1, ..., u

i
k−d, u

i
k−d+1, ..., u

i
k

Notice that the only possibility for a disturbing pair is (ui−1
k−d, u

i
1) since the d-suffix of wi−1

and wi has a fixed pattern ((k− d+ 1), (k− d+ 2), ..., k), and all the colors in wi−1 (and wi)
are distinct.

If (ui−1
k−d, u

i
1) is a disturbing pair, then α(ui−1

k−d) = α(ui1). In this case, we can not recolor

ui−1
k with α(ui−1

1) (because its neighbor and ui−1
k−d is colored with α(ui−1

1)). Moreover, it also
can not be colored with (k − d) (based on the definition of intermediate coloring). Hence we

9

have to recolor ui−1
k with a color c ∈

{
1, 2, ..., k − d

}
\
{
α(ui−1

k−d), (k − d)
}

. We analyse the
following cases.

(i) If (ui−1
k−d, u

i
1) is a disturbing pair, then α(ui−1

k−d) = α(ui1), so we have to skip vertex ui1.

If then α(ui2) 6= (k − d), we can recolor ui−1
k with α(ui2). Otherwise, we should also

skip ui2. Obviously, α(ui3) 6= α(ui−1
k−d), (k − d), so recoloring ui−1

k with α(ui3) still gives
a proper coloring.

(ii) If (ui−1
k−d, u

i
1) is not a disturbing pair, and α(ui1) 6= (k − d), then we can recolor ui−1

k

with α(ui1), otherwise we have to skip vertex ui1. If then α(ui2) 6= α(ui−1
k−d), then recolor

ui−1
k with α(ui2), otherwise we have to skip also this vertex. As in the previous case,
α(ui3) 6= α(ui−1

k−d), (k − d), so recoloring ui−1
k with α(ui3) gives a proper coloring.

Note that by this recoloring, we obtain our target coloring, by recoloring every vertex at
most once. An example to illustrate this algorithm is provided in Example A.4.

Algorithm 2:
Transforming an Intermediate k-Coloring into a Symmetric k-Coloring on a d-Path

Input: Intermediate k-coloring of G
Output: Symmetric k-coloring of G
for i = 1 to l do

Apply clique-recoloring on the (k − d− 1)-prefix of wi

with target coloring (1, 2, ..., k − d− 1)
Recolor uik−d with (k − d)

Apply right-chain-recoloring starting at uik−d up to uik
end

Theorem 2.14. Algorithm 2 is a proper recoloring method for the d-path with n vertices.
Moreover, each vertex is recolored at most twice.

Proof. Let G be currently colored with an intermediate coloring γ, and our target coloring is
a symmetric coloring β. Let γ′, β be the restriction of γ, β respectively in H, the subgraph
of G induced by

{
ui1, ..., u

i
k−d−1

}
. Notice that C = γ(H)∪ β(H) =

{
1, 2, ..., k− d

}
and every

vertex in N(H) is colored with a color from
{
k − d+ 1, ..., k

}
. Hence Proposition 2.11 holds

on H, i.e. γ′ can be transformed into β′ by recoloring every vertex of H at most twice.
Once we have finished the recoloring of H, then we will have k − d as a uik−d-free color

on the block wi since no vertex in N(uik−d is being colored with k− d. Hence we can recolor
uik−d with (k− d). This still gives proper coloring as no neighbor of uik−d is currently colored
with (k − d). Then, we can apply right-chain-recoloring on the (d+ 1)-suffix of G to recolor
it into ((k − d), (k − d + 1), ..., k). Note that this is possible because the current coloring of
G ensures that d(α′) ≥ d+ 2, where α′ is the current coloring.

By repeating this step for all the block of G, we will obtain the coloring β. The number
of steps needed is at most 2n because every vertex is recolored at most twice. An example to
illustrate this recoloring method is provided in Example A.2.

3 Main Results

3.1 Recoloring d-Paths

We know that for any d-degenerate graph G, and a set of k colors where k ≥ d + 2, Rk(G)
is connected. Moreover, if G is chordal graph, then the diameter of Rk(G) is quadratic [2]
Bousquet et al. [4] give a lower bound on k in order for the diameter of Rk(G) to be linear,
namely k ≥ 2(d + 1). We are interested in improving this lower bound. We want to look
whether this bound can be improved on a small class of graphs, namely the class of d-path.

10

In Theorem 1.8, we prove that we can still achieve a linear number of steps when the number
of colors is reduced by one, i.e. when k = 2d+ 1.

We build the proof by doing a sequence of transformation. First, we transform an arbitrary
k-coloring of G into almost symmetric k-coloring, then we transform it into symmetric k-
coloring. In the following section, we show that any two special colorings (symmetric and
almost symmetric) on a d-path can be transformed into any other in f(k)n steps where f(k) is
a polyomial function with parameter k. Then we will see that we can transform any k-coloring
of a d-path into special coloring in linear number of steps.

Lemma 3.1. Let G be a d-path, k ≥ d+ 3, and α be an almost symmetric k-coloring of G.
The coloring α can be transformed into a symmetric k-coloring β by recoloring every vertex
of G at most 3 times.

Proof. We recall that in α, the d-suffix of every block of G have pattern k−d+1, ..., k, and up
to the color permutation, we can assume that the pattern of every block of G in β is (1, 2, .., k).
In order to transform α into β, we can do a sequence of transformation: α → γ → β where
γ is an intermediate coloring. Based on Theorem 1 and Theorem 2, transforming α into γ
and γ into β requires that every vertex to be recolored at most once and twice respectively.
Hence to transfor α into β, every vertex have to be recolored at most 3 times.

Lemma 3.2. Let G be a d-path on n vertices, k ≥ d + 3, and α, β be two symmetric k-
colorings of G. If α and β differ by one transposition, then α can be transformed into β by
recoloring every vertex in G at most twice.

Proof. The summary of this method can bee seen in Algorithm 3, and an example to illustrate
how the method works is provided in Example A.3. Let w1,w2,...,wl be the l consecutive
k-blocks of G, where wi = (ui1,ui2,...,uik). Assume that for any block wi, the coloring α, β
differ in vertices uit and uit+1 for a fixed t ∈

{
1, 2, ..., k−1

}
. Note that, u1

k /∈ N(u1
1), so we can

recolor u1
1 with α(u1

k). Furthermore, since α is a symmetric coloring, then d(α) = k ≥ d+ 2,
so we can do a right chain recoloring up to vertex ult+1. Now we obtain the coloring α′ in

which α′(uij) = α(uij−1) for j ∈
{

2, ..., k
}
, i ∈

{
1, 2, ..., l

}
and α′(ui1) = α(ui−1

k) for every
i > 1. Roughly speaking, we shift the coloring one step to the right. Consider the subgraph
G′ induced by

{
u1

1, ..., u
1
k, u

2
1, ..., u

2
k, ..., u

i−1
1 , ..., ui−1

t+1

}
with the coloring α′. Note that in G′,

d(α′) ≥ d+3 so we can do a left chain recoloring, by first recoloring the vertex ult with α(ult+1)
and skip every vertex uit+1 for i ∈

{
1, 2, ..., l−1

}
. This step gives us the coloring β, satisfying

β(uij) = α(uij) for every j 6= t, t+ 1, β(uit) = α(uit+1), and β(uit+1) = α(uit). Note that, every
vertex is recolored at most twice, one for each the right and the left-chain-recoloring.

Algorithm 3:
Transforming Two Symmetric k-Colorings that Differ by One Transposition

Input: Symmetric k-colorings α of G, t ∈
{

1, 2, ..., k − 1
}

Output: Symmetric k-colorings β of G s.t α, β differ by one transposition

- Recolor u1
1 with α(u1

k), then apply right-chain-recoloring up to ult+1

- Recolor ult with α(ult+1)

- Apply left-chain-recoloring starting at ult up to u1
1 by skipping uit+1 for every

i ∈
{

1, 2, ..., l − 1
}

Lemma 3.3. Let G be a d-path and k ≥ d + 3. Any two symmetric k-colorings α, β in G
can be transformed one into each other in at most k2n steps.

Proof. Note that the transformation of any two symmetric k-colorings α and β can be seen
as a sequence of transformation of symmetric k-colorings α = α1 → α2 → ... → αm = β in
which αi and αi+1 are symmetric k-colorings that differ exactly by one transposition. Let
α = (w|w|...|w) and β = (w′|w′|...|w′) where w, and w’ are any permutation of (1, 2, ..., k).

11

Furthermore, w can be step-by-step transformed into w′, where in each step, we only
change exactly one transposition. In the worst case, the number of step-by-step transfor-
mation needed to transform w into w′ is 1

2k(k − 1), for example when w = (1, 2, ..., k) and
w′ = (k, k − 1, ..., 1). Thus the length m of the sequence of transformation from α into β is
also at most 1

2k(k − 1). By Lemma 3.2, for every i ∈
{

1, 2, ...,m − 1
}

we can transform αi
into αi+1 in at most 2n steps. Hence, the number of steps needed to transform α into β is at
most 2n(1

2k(k − 1)) ≤ k2n.

In what follows, we are going to discuss a method to transform an arbitrary k-coloring
of a d-path G into an almost symmetric k-coloring. Algorithm 4 gives the summary of this
method. Recall the definition of nice coloring on a block w of G, as the coloring of w in
which the d-suffix of w has pattern (k−d+1, k−d+2, ..., k) (note that we do not care about
the coloring of (k − d)-prefix of w).

Algorithm 4: Transforming Arbitrary k-Coloring into Almost Symmetric k-Coloring
on d-Path G

Input: Arbitrary k-colorings α of G, t ∈
{

1, 2, ..., k − 1
}

Output: Almost Symmetric k-colorings β of G
Add a virtual block wl+1 colored with a nice coloring
for i = l downto 1 do

for c = k − d+ 1 to k do
u = uic
vRbad = v ∈ N(u) s.t. α(v) = c if any

if ∃! vRbad ∈ NR(u) then
do Procedure 1

end

if ∃ vRbad ∈ NR(u) ∧ vLbad ∈ NL(u) then
do Procedure 2
do Procedure 1

end

if ∃! vLbad ∈ NL(u) then
do Procedure 3
do Procedure 2
do Procedure 1

end

end

end
Procedure 1

1 Recolor uRp+1 with a uRp+1-free color

2 Recolor vRbad with α(uRp+1)

3 Recolor u with c

Procedure 2
4 Recolor u with a u-free color

5 Recolor vLbad with α(u)

Procedure 3
6 Recolor uRp with c

Lemma 3.4. Let G be a d-path and k = 2d+ 1. Consider two consecutive k-blocks wi−1 and
wi in G, where wi has a nice coloring. We can recolor those blocks in such a way that both
of them will have a nice coloring, by only recoloring the vertices of wi−1 and (k− d)-prefix of
wi, in at most 6d steps.

12

Proof. Let G be initially colored with an arbitrary k-coloring α (which is not almost sym-
metric), and recall that wi−1||wi is written as

ui−1
1 , ui−1

2 , ..., ui−1
k ||u

i
1, u

i
2, ..., u

i
k

Assume that wi has a nice coloring, i.e. the vertices uid+2, u
i
d+3, ..., u

i
k are colored with

d + 2, d + 3, ..., k respectively. We will iteratively and consecutively recolor the vertices
ui−1
d+2, u

i−1
d+3, ..., u

i−1
k s.t. the block wi−1 becomes ”nice”.

Now assume that after some steps, the (p−1) leftmost vertices of the d-suffix of wi−1 have
been recolored with their target color. Now we want to recolor vertex ui−1

d+p+1 with (d+p+1).

For simplification, let u = ui−1
d+p+1 and c = d + p + 1. Note that we will not be able to do

so trivially, if and only if N(u) contains at least one u-bad vertex. Moreover, we note that
N(u) can only contain at most two u-bad vertices (one in NL(u) and one in NR(u)), as the
ordering distance of the leftmost and the rightmost neighbor of u is at most 2d.

We have to consider three cases. In all cases, we assume that any u-bad vertex vbad is
frozen, otherwise we can recolor it with a vbad-free color. Our goal is to ”kill” every u-bad
vertex in N(u), i.e. recoloring every u-bad vertex, so that N(u) will not contain any u-bad
vertex anymore, and then we can recolor u with c.

Case 1. There is exactly one u-bad vertex, vRbad ∈ NR(u)
Consider the set of q ≤ (2d+1) vertices, X =

{
vRbad, vbad+1, ..., u

i−1
2d+1, u

i
1, ..., u

i
d+p+1

}
(note

that vRbad can be in wi). In this set X, there are two vertices that are colored with (d+ p+ 1)
(namely, the vertex vRbad and uid+p+1). Take the |X| − d leftmost vertices of X, namely the

set M =
{
vRbad, vbad+1, ..., u

i−1
2d+1, u

i
1..., u

i
p+1

}
. Note that M can not be empty, since vRbad is

on the left of uip+1. Moreover, it should contains at least one unfrozen vertex. In particular,

the vertex uip+1 is absolutely unfrozen, because its left neighbor vRbad and its right neighbor

uid+p+1 are colored the same. Take an unfrozen vertex vuf in M , and recolor it with a vuf -free

color (notice that this color is not c). Since vRbad, vuf ∈ M then they are adjacent (because
|M | ≤ d + 1), then recoloring vuf would yield vRbad to be no longer frozen. Furthermore, as
we assumed that vRbad is frozen, then no other vertex in N(vRbad) is colored with α(vuf), the
former color of vuf . So we can recolor vRbad with α(vuf), and thus, NR(u) does not contain
any u-bad vertex anymore, and we can recolor u with c. Therefore, to recolor u we need at
most 3 steps.

Case 2. There are two u-bad vertices, vRbad ∈ NR(u) and vLbad ∈ NL(u).
Now, as the ordering distance of the leftmost vertex of NL(u) and the rightmost vertex of

NR(u) is (2d + 1) then the subset of ≤ d + 1 vertices M =
{
vLbad+1, v

L
bad+2, ..., u

i−1
d+p+1 = u

}
contains at least one unfrozen vertex. In particular, u is unfrozen, because it has two neigh-
bors which are colored the same. As in the previous case, we can take an unfrozen vertex
vuf ∈ M , recolor it by a vuf -free color (notice that this color is not (d + p + 1)). Since
vLbad, vuf ∈M and |M | ≤ d+ 1 then they are adjacent, so recoloring vuf yields vRbad to be no
longer frozen. Moreover, as we assumed that vLbad is frozen, then no other vertex in N(vLbad)
is colored with α(vuf), the former color of vuf . So we can recolor vLbad with α(vuf), and thus,
NL(u) does not contain any u-bad vertex, and the only bad vertex is vRbad ∈ NR(u). So we
are now in the Case 1. Notice that the number of steps we need to kill vLbad is 2. Hence, to
recolor u, we have to do the same way as in the Case 1, so the number of steps needed is at
most 5.

Case 3. There is only one u-bad vertex, vLbad ∈ NL(u)
Consider the set of 2d+1 vertices,

{
ui−1
d+p+1, ..., u

i−1
2d+1, u

i
1, ..., u

i
d+p

}
. Based on our assump-

tion, no vertex in this set is colored with c. Hence, we can recolor vertex uip with c, because

none of its neighbor is currently colored with (d+ p+ 1). Note that uip ∈ NR(u), hence now
we are in the Case 2. Notice that we only do at most one step recoloring to be in the Case 2.
Therefore, to recolor u, we will need at most 6 steps. As we have to recolor d-suffix of wi−1,
so the number of steps is at most 6d.

13

Remark 3.5. The bound of k ≥ 2d+ 1 in Lemma 3.4 is necessary, i.e. the recoloring method
given in the Lemma 3.4 does not work for any k ≤ 2d. We provide a counter-example in
Example A.6 of the Appendix. In this case, eventhough there are two vertices in the set{
ui−1
d+p+2, ..., u

i−1
2d+1, u

i
1, ..., u

i
d+p+1

}
colored the same, it does not guarantee that it contains

an unfrozen vertex, because the number of colors k is less than the number of neighbors
|N(v)| = 2d that a vertex v may have.

Lemma 3.6. Let G be a d-path and k ≥ 2d+ 1. Any k-coloring of G can be transformed into
an almost symmetric coloring in at most 3n steps.

Proof. We will first consider the case for k = 2d + 1. Let α be any k-coloring of G. To
transform α into a coloring in which all blocks have nice coloring, we have to repeat the
algorithm in the Lemma 3.4 at most l times where l is the number of blocks in G. Moreover,
in order to apply the recoloring method as in Lemma 3.4, we have to first recolor wl, the
rightmost block of G. Here we can add one virtual block wl+1 with some virtual vertices and
edges, and assume that the virtual block has a nice coloring. For any recoloring of block wi,
we have to recolor the d-suffix of wi. Moreover, since G consists of l = n

k blocks, thus we will
have to call the algorithm in Lemma 3.4 n

k times. Hence, overall, the total number of steps

is at most 6dn
k < 3n. Note that in this case, when all the blocks of G have nice coloring, it

turns that the coloring of G is almost symmetric, because H, the (d + 1)-prefix of wi forms
a clique, and N(H) uses d colors of (d + 2), (d + 3), ..., (2d + 1), then every vertex v in the
(k − d)-prefix of a block would be colored differently.

The case for k > 2d+ 1 is trivial, because |N(v) ∪
{
v
}
| = 2d+ 1 for every vinV (G), and

we have k > 2d + 1 colors. Therefore, every u-bad vertex is unfrozen, and we can recolor it
with a u-free color, which yields that N(u) no longer contains any u-bad vertex. In this case,
the number of steps needed to recolor u is at most 3 (at most two steps to recolor the u-bad
vertices and one step to recolor u). By the same reasoning as above, the number of steps
needed to make all the blocks have nice coloring is at most 3dn

k < 3n
2 . However, eventhough

all the blocks are colored with a nice coloring does not turn that the coloring becomes almost
symmetric, as the number of colors k > 2d + 1 then the (k − d)-prefix of some block may
contain vertices that are colored the same. In this case, we can transform the coloring into an
almost symmetric coloring by simply changing the color of vertices that are colored the same
such that every block uses exactly k colors. The number of steps to do this transformation
is at most n

k (k − d) < n. Hence, overall we need at most 3n
2 + n < 3n steps to transform the

coloring into almost symmetric.

Now we will prove our main theorem, namely Theorem 1.8.

Proof of Theorem 1.8

Proof. To transform the k-coloring γ into the k-coloring δ, we will do a sequence of transfor-
mation:

σ → α′ → α→ β → β′ → φ

where α′, β′ are almost symmetric k-coloring, and α, β are symmetric k-coloring.
Lemma 3.6 says that we can transform σ into α′ (resp. β′ into φ) in at most 3n steps.

Then by Lemma 3.1, α′ can be transformed into α (resp. β into β′) in at most 3n steps.
Now by Lemma 3.3, α can be transformed into β in at most k2n steps. Therefore, overall,
the number of steps to perform the recoloring α into β is at most k2n + 2(3n) + 2(3n) =
(k2 + 12)n = ((2d+ 1)2 + 12)n = (4d2 + 4d+ 13)n.

So far, we assumed that n = kl. In case that n = kl+ c where c < k is a constant, we can
just add some virtual vertices and edges to simplify the recoloring, then we can omit them
later.

14

3.2 Recoloring d-Trees

Now we will try to see whether we can extend this method to a larger class, namely the class
of d-trees.

Definition 3.7. A (complete) d-tree G is built from a rooted tree (or 1-tree) by adding edges
from each vertex to its father, the father of its father, etc. up to d predecessors.

It is obvious that a d-path is an induced subgraph of a d-tree. Notice that we can see a
d-tree as a non-disjoint union of d-paths, i.e. for any pair of paths (P1, P2), there exist j ≥ 0
such that

{
v1, v2, ..., vj

}
are the common vertices of P1 and P2. In this case, vertex v1 is the

root of the d-tree.. Let the d-tree branches into some paths P1, P2, ..., Pm. In most of our
discussion, we will denote the vertex in which a path makes some branches by uXt , and denote
the block containing this vertex by wPi

X (the superscript Pi indicates that this block is in path
Pi and the subscript X denotes the numbering of the block based on the vertex ordering of
path Pi. Moreover, sometimes we will put a numbering Pi as a subscript/superscript to
indicate that a vertex of a block belongs to the path Pi.

We provide an example of d-tree graph with a (2d + 1)-coloring in Figure 5 (the dashed
lines in every figure are the border of the blocks). In the following section, G always refer
to a d-tree Beforehand, the definition of symmetric coloring and almost symmetric coloring
still hold on d-trees. In this case, two blocks are considered as different blocks if they contain
at least one uncommon vertex. We provide an example of a d-tree with a symmetric and an
almost symmetric coloring in Figure 5 and Figure 6 respectively. Some lemmas that are used
in the proof of Theorem 1.9 follows.

6
1 2 3 4 5 1 276 3 4

2 3 4 5
2

3

4

1

7
4

5

7

6

1

Figure 5: A 3-tree with a symmetric 7-coloring

3 1 4 52

1

5

4

2
6

5

4

2

3

3

6
1 3 2 4 56

1 4 5 6 1

Figure 6: A 3-tree with an almost symmetric 6-coloring

Lemma 3.8. Let G be a d-tree and k ≥ d+ 3. Any two symmetric k-colorings α, β in G can
be transformed one into each other in at most k2n steps.

Proof. We adapt the proof of Lemma 3.2. Let G be a d-tree graph that is colored with k-
coloring α. Consider a pair of paths (P − 1, P2) that branch at a vertex vt, in particular let
P1 = (v0, ..., vt, vt+1, ..., vm) and P2 = (v0, ..., vt, v

′
t+1, ..., v

′
m′) of G. The method is exactly

the same as in the Lemma 3.3, except that at some vertices where a path branches. Based

15

on the definition of the symmetric coloring on d-tree, for any j ≥ 1, α(vt+j) = α(v′t+j) where
vt+j and v′t+j are the vertices after vt in the vertex ordering of P1 and P2 respectively. In
this case, everytime we recolor the vertex vt+j , then in the next step we recolor the vertex
v′t+j . By this algorithm, we will maintain the coloring properties of any path contained in G
to be the same as in Lemma 3.2. Moreover, by the similar reason as in Lemma 3.3, thus, any
symmetric k-coloring α and β can be transformed one into each other in at most k2n steps.

The fact in the proposition and the remark below will be used in the proof of the next
lemmas.

Proposition 3.9. An almost symmetric k-coloring of a d-tree G for d + 3 ≤ k ≤ 2d + 1
satisfies the following property. Consider two paths P1 and P2 of G that intersect in vertex
uXt of the block wP1

X of the path P1 (similarly, the block wP2

X of the path P2). Let the common
vertices of these two paths in this block are

{
uX1 , ..., u

X
t

}
. Hence the (k− t)-suffix of the block

wP1

X and the block wP2

X use the same set of colors. Otherwise, there are at least two vertices
in
{
ux1 , ..., u

x
t

}
that are colored the same.

Remark 3.10. Consider two consecutive blocks wi,wi+1 from a d-path that is colored with an
almost symmetric coloring. When applying recoloring within the (k− d)-prefix of wi+1 using
the set of colors

{
1, 2, ..., k − d

}
, we can skip as many vertices as we need. This is possible

because the d-suffix of wi and wi+1 are respectively colored with
{
k − d+ 1, ..., k

}
.

Lemma 3.11. Let G be a d-tree with an almost symmetric k-coloring of α where k ≥ d+ 3.
The coloring α can be transformed into a symmetric k-coloring by recoloring every vertex of
G at most 5 times.

Proof. We will adapt the proof of Lemma 3.1. Let G be a d-tree with an almost symmetric
k-coloring of α. Recall that up to the color permutation, and without loss of generality, we
can assume that the pattern of (k − d)-suffix of every block in G is k − d+ 1, ..., k. First, we
will transform the coloring α of P into an intermediate k-coloring γ. The following method
explains the step-by-step transformation to transform α into γ. The method is exactly the
same as in Algorithm 1, except at some vertices in which a path has branches.

1. Apply Algorithm 1 on every path P in G. We do it consecutively from the leaves of the
tree until finally we reach the root of the tree. Everytime we have branches, we do the
following.

(i) Consider a set of paths P =
{
P1, P2, ..., Pm

}
that intersect on a vertex uXt of the

block wPi

X of the path Pi for i ∈
{

1, 2, ...,m
}

. Apply Algorithm 1 to every path of

Pi ∈ P up to the block wPi

X+1.

(ii) Now we will recolor the block wPi

X . Let S be the set of common vertices of the block

wPi

X for every Pi ∈ P. Note that when we want to recolor a vertex v ∈ S with c, the
color c has to be a v-free in every path Pi ∈ P (indeed, Proposition 3.9 ensures that
this is always possible, since the set of colors of the (k− t)-suffix of block wPi

X) are the
same for every Pi ∈ P. Let vS be the ”first” such vertex in S. On the path P1 ∈ P,
continue Algorithm 1 until we have an appropriate vS-free color c that we will use to
recolor vS .

(iii) On every path Pi ∈ P for i ∈
{

2, 3, ...,m
}

, apply Algorithm 1 up to the vertex uPi

that is colored with c, and skip the remaining vertices on the (k − t)-suffix of wPi

X .
Note that this is always possible based on Remark 3.10. As soon as we have that color
c that is vS-free in every path Pi ∈ P, then recolor vS with c and continue Algorithm
1 until we finish the recoloring of the block wPi

X .

2. Repeat steps (ii) and (iii) above everytime we have branches, until we finish the recoloring
of G. In the end, G will be colored with γ.

16

Notice that the method above requires the recoloring of every vertex of G at most once.
Now, we will explain how to transform γ into a symmetric coloring β.

1. Starting from the root of the tree, apply Algorithm 2, by first transforming the leftmost
block of the tree (which is also the leftmost block of every path in the tree) such that the
pattern becomes (1, 2, ..., k). We do it consecutively to the right as in Algorithm 2.

2. Similar to the previous method, the exception is when we have branches in the path.
Everytime we have branches, we do the following. Assume that we will recolor the block
wPi

X in which the path branches at vertex uXt into some set of paths P =
{
P1, P2, ..., Pm

}
.

We consider two cases.

(i) If the pattern of (k − t)-suffix of the block wPi

X is not the same in all the paths of P
(this might be the case when t ∈

{
1, ..., (k − d− 3)

}
) then first, we have to make the

pattern to be the same in every Pi ∈ P. Otherwise, go to step (ii). To do so, apply
clique-recoloring to the (k − t)-suffix of every path Pi ∈ P. In fact, we can obey the
d-suffix of every Pi ∈ P as they already have the same pattern, and just implement
the clique-recoloring on sub-block W = (uXt+1, u

X
t+2, ..., u

X
k−d) in every path Pi ∈ P.

(ii) Now the pattern of wPi

X is the same for every Pi ∈ P. Apply Algorithm 2 on wPi

X for

every Pi ∈ P. In this case, everytime we have to recolor a vertex of wPi

X , then we do
it consecutively for every Pi.

(iii) As soon as the pattern of the block wPi

X is (1, 2, ..., k), for every Pi ∈ P, continue the
recoloring as in Algorithm 2 to the right.

3. Repeat step 2 above everytime we have a branches until we finish the recoloring of G. In
the end, G will be colored with β.

By this method, we can transform γ into β by recoloring every vertex at most four times.
Hence, to transform α into β every vertex has to be recolored at most 5 times, i.e. the number
of steps needed is at most 5n. An example to illustrate this recoloring is provided in Example
A.7 and Example A.8.

Lemma 3.12. Let G be a d-tree and k ≥ 2d+1. Consider two consecutive k-blocks wi−1 and
wi in G, where wi has a nice coloring. We can recolor those blocks in such a way that both
of them will have a nice coloring, by only recoloring the vertices of wi−1 and (k− d)-prefix of
wi.

Proof. The recoloring is exactly the same as in d-paths except at some vertices in which the
paths of G have branches. Let P =

{
P1, P2, ..., Pm

}
be the set of paths that branch at vertex

uXt of the block wPi

X for Pi ∈ P. Assume that the blocks wPi

X+1 on the right of wPi

X in path

Pi has nice coloring. Our goal is to recolor wPi

X and (k − d)-prefix of wPi

X in such a way that

wPi

X has a nice coloring. Assume now that the (p− 1) leftmost vertices of the d-suffix of wPi

X

have been colored with the target coloring, we plan to recolor the vertex u = uXd+p+1 ∈ wPi

X

with c = d+ p+ 1.
Let S be the set of common vertices of every path Pi ∈ P in the block wPi

X . We assume
that we can not recolor u trivially because N(u) contains at least one u-bad vertex, and these
u-bad vertices are frozen at some paths. Otherwise, it can be recolored trivially so that it is
no longer u-bad. Let us denote vLbad and vRbad the u-bad vertices that belong to NL(u) and
NR(u) respectively. Moreover, we also assume that u, vRbad (resp. vLbad), and the unfrozen

vertex vuf are not together in S or V (wPi

X)\S. Otherwise, we can consider it as a case of
d-paths. To simpifly our discussion, we will only consider two branches, namely Ph and Pj .
In the following section, we analyse several cases that we could have in a pair of branches
Ph, Pj ∈ P of a d-tree, and how to recolor the vLbad and vRbad.

17

Case 1 (see Figure 7). The block only contains vRbad ∈ NR(u).
This case is similar to Case 1 of Lemma 3.4. We remind you that as in d-paths, there

exists at least one unfrozen vertex vuf ∈ NR(vRbad). Note that here we assume that u ∈ S,

otherwise we can consider it as the case of Lemma 3.4 as u, vRbad, vuf ∈ V (wPh

X)\S.

(i) Case 1.1. u ∈ S and vRbad /∈ S (see Figure 7 (a)).

As vRbad /∈ S, then each branch contains one vRbad, namely vRbadh in wPh

X and vRbadj in w
Pj

X .

Moreover, the unfrozen vertex vuf /∈ S, i.e. there exists vufh in wPh

X and vufj in w
Pj

X .
Hence we can recolor vufh and vufj with a vufh-free and vufj -free color respectively,
then recolor vbadh and vbadj with α(vufh) and α(vufj), respectively.

(ii) Case 1.2. u ∈ S, vRbad ∈ S (see Figure 7 (b)).

This case is a bit more complicated. Assume that the unfrozen vertex vuf /∈ S, otherwise
we can consider it as the coloring of d-path as u, vRbad, and vuf are in S. Hence, there

exists an unfrozen vertex vufh in wPh

X and vufj in w
Pj

X . First we look at the block

wPh

X . Since vertex vufh is unfrozen in wPh

X , thus we can recolor it with a vufh -free color.

Hence, f = α(vufh) is now a vRbad-free color in wPh

X .

Now look at the block w
Pj

X . If no vertex of NR(vRbad) in this block is colored with f , it

means that f is a vRbad-free color in w
Pj

X . Otherwise, if f is not a vRbad-free color, i.e. it
is used by a vertex y ∈ NR(vRbad), then:

• If y is unfrozen, recolor it with a y-free color so that f becomes vRbad-free.

• Otherwise if y is frozen, then recolor vufj with a vufj -free color, then recolor y
with α(vufj), so that f will be vRbad-free.

Now f is vRbad-free in both wPh

X and w
Pj

X . Hence we can recolor vRbad with f .

Case 2 (see Figure 8). The block contains both vLbad ∈ NL(u) and vRbad ∈ NR(u).
This case is similar to Case 2 of Lemma 3.4. Our goal is to recolor vLbad so that we can be

in the Case 1. We remind you that as in d-paths, u is unfrozen. Note that here we assume
that vRbad /∈ S, otherwise we can consider it as the case of Lemma 3.4 as vLbad, u, v

R
bad ∈ S.

(i) Case 2.1. vLbad ∈ S, u ∈ S, and vRbad /∈ S (see Figure 8 (a)).

Note that as u ∈ S, then vuf ∈ S (which implies vLbad, vuf , u ∈ S). So the case becomes
trivial as we can consider the recoloring of vLbad as in a d-path.

(ii) Case 2.2. vLbad ∈ S, u /∈ S, and vRbad /∈ S (see Figure 8 (b)).

As u /∈ S then ∃uPh
∈ wPh

X and ∃uPj
∈ w

Pj

X . First we look at the block wPh

X . Vertex
uPh

is unfrozen in Ph, thus we can recolor it with a uPh
-free color. Hence, f = α(uPh

)

is a vLbad-free color in Ph. Now look at the block w
Pj

X . If no vertex of NR(vLbad) in Pj
is colored with f , it means that f is also vLbad-free color in Pj . Otherwise, if f is not a
vLbad-free color, i.e. it is used by a vertex y ∈ NR(vRbad), then:

• If y is unfrozen, recolor it with a y-free color, so that f becomes vRbad-free.

• Otherwise if y is frozen, then recolor uPj with a uPj -free color, then recolor y with
α(uPj), so that f will be also vLbad-free color in Pj .

Now f is vRbad-free in both wPh

X and w
Pj

X , so then, we can recolor vLbad with f .

Hence we can consider the current condition as in Case 1 above.

Case 3 (see Figure 9). There exists a branch wPh

X that only contains vLbad ∈ NL(u), and the
other branches contain both vLbad ∈ NL(u) and vRbad ∈ NR(u)).

We will prove that we can make the block wPh

X contains both vLbad ∈ NL(u) and vRbad ∈
NR(u)). If we can do so, then we can consider the case as in Case 2. Look at the path Pj ,
there are two cases to consider. So our goal is to recolor a vertex v ∈ NR(u) with c.

18

u

vRbadj

vRbadh

vufj

Ph

Pj

vufh

(a) Case 1.1

u vRbad
vufh

vufj

Ph

Pj

(b) Case 1.2

Figure 7: Case 1 of Lemma 3.12

uvLbad

vRbadh

vRbadj

Ph

Pj

(a) Case 2.1

vLbad

vRbadj

vRbadh

uPj

Ph

Pj

uPh

(b) Case 2.2

Figure 8: Case 2 of Lemma 3.12

uvLbad

Ph

PjvRbad

(a) Case 3.1

vLbad
uPh

uPj

Ph

PjvRbad

(b) Case 3.2

Figure 9: Case 3 of Lemma 3.12

(i) Case 3.1. vLbad ∈ S, u ∈ S (see Figure 9 (a)).
This case is similar to Case 3 of Lemma 3.4 (we suggest you to look again at Lemma
3.4). In this case, there exists a vertex v ∈ NR(u) s.t. no vertex in N(v)∪

{
v
}

is colored
with c. Hence we can recolor v with c.

(ii) Case 3.1. vLbad ∈ S, u /∈ S (see Figure 9 (b)).
(similar to Case 3.1)

Remark 3.13. Note that the case when the block wPh

X only contains vRbad ∈ NR(u), and the

block w
Pj

X contains both vLbad ∈ NL(u) and vRbad ∈ NR(u) can not be happen, since if the

block wPh

X contains vLbad then so do every path in P . Otherwise, vLbad /∈ S, that yields that

vLbad, u, v
R
bad, u ∈ V (wPi

X)\S, and the problem becomes trivial.

Lemma 3.14. Let G be a d-tree that is colored with a k-coloring α with k = 2d + 1. Then
we can transform α into an almost symmetric k-coloring β, in at most 6dn steps.

Proof. Note that in order to transform α into β, the coloring of every block of G must be a
nice coloring. In each step, if a block does not have any branch, then it requires at most 6d
steps as in Lemma 3.4. If the block has some branches (let us say the block wPi

X , then we
consider Case 1, 2, 3 of Lemma 3.12. In order to recolor a vertex of the d-suffix of the block,
Case 1 of Lemma 3.12 requires at most 3 steps. Case 2 requires 2 more steps to be in Case
1, so it needs at most 5 steps. Meanwhile, Case 3 requires one more step to be in Case 2, so
it needs at most 6 steps to recolor one vertex of the d-suffix of wPi

X . As we have to recolor

d-suffix of the block, hence to transform the coloring of the block wPi

X into a nice coloring,
we need at most 6d steps (the same result as in d-paths).

Note that the number of blocks in a d-tree can not be greater than the number of vertices
n. Hence, to transform an arbitrary k-coloring of a d-tree into an almost symmetric coloring,
we need at most 6dn steps.

19

Now we are ready to prove our main theorem, namely Theorem 1.9.

Proof of Theorem 1.9

Proof. By the same reasoning as in Theorem 1.8, we can do a sequence of transformation

σ → α′ → α→ β → β′ → φ

where α′, β′ are almost symmetric k-coloring, and α, β are symmetric k-coloring. Now by
Lemma 3.14, to transform σ into α′ (resp. β′ into φ) we need at most 6dn steps. Then by
Lemma 3.11, α′ can be transformed into α (resp. β into β′) in at most 5n steps. Now by
Lemma 3.8, α can be transformed into β in at most k2n steps. Therefore, overall, the number
of steps to perform the recoloring α into β is at most k2n+2(6dn)+2(5n) = (k2+12d+10)n =
((2d+ 1)2 + 12d+ 10)n = (4d2 + 16d+ 11)n.

4 Conclusion and Further Works

We have seen that given a set of k colors with k ≥ 2d+ 1, we have a step-by-step transforma-
tion to transform any two k-colorings of a d-path (or d-trees in general) within a linear (in
n) number of steps. This result improves the lower bound on k given by Bousquet and Per-
arnau [4]. However, while the transformation between special colorings (symmetric/almost
symmetric k-colorings) of a d-path have a good lower bound, namely k ≥ d + 3, the lower
bound on k of transforming an arbitrary k-coloring into an almost symmetric k-coloring is
not good enough, since we have k ≥ 2d+1, which is lower only by one compared to the result
of Bousquet and Perarnau [4].

Hence finding a better lower bound on the number of colors k to transform an arbitrary
k-coloring into an almost symmetric k-coloring on a d-path while preserving the number of
steps to be linear in n, is one goal of further research. Furthermore, as our discussion in this
paper is restricted to a small class of d-degenerate graphs, we are also interested in analysing
whether the methods that we use in the recoloring of d-paths can be extended into larger
classes of d-degerate graphs.

References

[1] L. Cereceda. Mixing Graph Colourings. PhD thesis, London School of Economics and
Political Science, 2007.

[2] M. Bonamy, M. Johnson, I. Lignois, V. Patel, and D. Paulusma. Reconfiguration Graphs
for Vertex Colourings of Chordal and Chordal Bipartite Graphs. Journal of Combinatorial
Optimization, pages 1-12, 2012.

[3] M. Bonamy and N. Bousquet. Recoloring Graphs via Tree Decompositions. 2016.

[4] N. Bousquet and G. Perarnau. Fast Recoloring of Sparse Graphs. European Journal of
Combinatorics, 52:1-11, 2016.

[5] M. Johnson, D. Kratsch, S. Kratsch, V. Patel, and D. Paulusma. Finding Shortest Paths
between Graph Colourings. CoRR, 2014. arXiv:1403.6347.

[6] P. Bonsma and L. Cereceda. Finding Paths between Graph Colourings: PSPACE-
Completeness and Superpolynomial Distances. Theoretical Computer Science,
410(50):5215–5226, 2009.

20

A Appendix

A.1 Basic Definitions and Concepts in Graph Theory

A graph G(V,E) is a set V of vertices and a set E of edges. In an undirected graph, an edge
is an unordered pair of vertices, and an edge connecting vertex u and v is denoted by uv. An
ordered pair of vertices is called a directed edge (arc). A graph with directed edges is called
directed graph. If we allow multi-sets of edges, i.e. multiple edges between two vertices, we
obtain a multigraph. A self-loop or loop is an edge between a vertex and itself. An undirected
graph without loops or multiple edges is known as a simple graph. In this paper, we assume
graphs to be simple and undirected.

If vertices u and v are endpoints of an edge, we say that they are adjacent. If vertex v is
one of edge e’s endpoints, v is incident to e. The degree of a vertex is the number of edges
incident to it. A walk is a sequence of vertices v1, v2, ..., vt such that (vi, vi+1) ∈ E. A path
is a walk where vi 6= vj ∀i, j. In other words, a path is a walk that visits each vertex at most
once. A closed walk is a walk where v1 = vt. A cycle is a closed path, i.e. a path combined
with the edge (vt, v1). Similarly, in a directed graph D, we use the terms of directed path and
directed cycle. Consider a vertex u of a D, the number edges going in u is called the in-degree
of u and the number of edges going out of u is its out-degree. Most of the times in this report,
we will discuss an undirected graph. Thus, G always refer to undirected graph.

A graph is connected if for each pair of vertices, there exists a path connecting them.
Consider a pair of vertices (u, v) in G. The length of a path connecting u, v is the number
of edges traversed by the path. A path connecting u, v having the minimum length is called
shortest path between u and v, and the length is denoted by d(u, v) and is called the distance
between u and v. The diameter of G is the maximum length of a shortest path between any
pair of vertices in G. A disconnected graph has infinite diameter. A tree is a connected graph
with no cycles. An internal vertex (or inner vertex) is a vertex of degree at least 2. A vertex
with degree 1 is called a leaf. A forest is a graph where each connected component is a tree,
in other words, the graph consists of a disjoint union of trees. A rooted tree is a tree in which
one vertex has been designated the root.

1

A.2 Some Examples

Example A.1. Consider two consecutive blocks wi−1 and wi of a 2-path G colored with a
5-coloring α. We provide some example in Table 1 and 2 as you can find below. Every row
shows the step-by-step transformation of the recoloring, where the circled number denotes
the color that is currently changed. Table 1 is an example of a right-chain-recoloring applied
on those blocks, where it is initially colored with (2, 3, 1, 4, 5 || 3, 1, 2, 4, 5). The coloring starts
from vertex ui−1

1 and stops at vertex ui3. Meanwhile Table 2 is an example of a right-chain-
recoloring applied on those blocks by skipping some vertices. Note that the blocks are initially
colored with (2, 3, 1, 4, 5 || 2, 3, 1, 4, 5) and we can skip at most one vertex in each step because
d(α) = 5 = d+ 3. In this example, we skip the vertex ui−1

3 and ui−1
5 .

Example A.2. Table 3 is an example of clique-recoloring applied on a block wi of a 5-path
that is initially colored with an intermediate 9-coloring. This table shows a step-by-step
recoloring based on Algorithm 2.

Example A.3. Table 4 is an example of recoloring as in Lemma 3.2. Consider a 3-path on
12 vertices having 6-symmetric colorings α1, α2 that differ by one transposition. Assume that
the block patterns of α1 and α2 are (2, 1, 6, 5, 3, 4) and (2, 1, 6, 3, 5, 4) respectively. The step
by step transformation from α1 into α2 is shown in Table 4.

Example A.4. Figure 10 is an example of the implementation of Algorithm 1 applied on
a 5-path of 27 vertices, and k = 9. Figure 10(a) shows the initial coloring α (which is
almost symmetric) of the path, and Figure 10(b) is the intermediate coloring γ obtained after
applying Algorithm 1. The underlined number indicates that we skip the coloring of the

21

Vertex ui−1
1 ui−1

2 ui−1
3 ui−1

4 ui−1
5 ui1 ui2 ui3 ui4 ui5

Step 0 2 3 1 4 5 3 1 2 4 5
Step 1 5© 3 1 4 5 3 1 2 4 5
Step 2 5 2© 1 4 5 3 1 2 4 5
Step 3 5 2 3© 4 5 3 1 2 4 5
Step 4 5 2 3 1© 5 3 1 2 4 5
Step 5 5 2 3 1 4© 3 1 2 4 5
Step 6 5 2 3 1 4 5© 1 2 4 5
Step 7 5 2 3 1 4 5 3© 2 4 5
Step 8 5 2 3 1 4 5 3 1© 4 5

Table 1: Right-chain-recoloring up to vertex ui3 on 2-path

Vertex ui−1
1 ui−1

2 ui−1
3 ui−1

4 ui−1
5 ui1 ui2 ui3 ui4 ui5

Step 0 2 3 1 4 5 2 3 1 4 5
Step 1 5© 3 1 4 5 2 3 1 4 5
Step 2 5 2© 1 4 5 2 3 1 4 5
Step 3 5 2 1 3© 5 2 3 1 4 5
Step 4 5 2 1 3 5 4© 3 1 4 5
Step 5 5 2 1 3 5 4 2© 1 4 5
Step 6 5 2 1 3 5 4 2 3© 4 5

Table 2: Right-chain-recoloring up to vertex ui3 on 2-path by skipping some vertices

Vertex ui1 ui2 ui3 ui4 ui5 ui6 ui7 ui8 ui9
Step 0 4 3 2 5 6 7 8 9 3
Step 1 4 1© 2 5 6 7 8 9 3
Step 2 4 1 3© 5 6 7 8 9 3
Step 3 4 2© 3 5 6 7 8 9 3
Step 4 1© 2 3 5 6 7 8 9 3
Step 5 1 2 3 4© 6 7 8 9 3
Step 6 1 2 3 4 5© 7 8 9 3

...
Step 10 1 2 3 4 5 6 7 8 9©

Table 3: Clique-recoloring on block wi of a 5-path with k = 9

Vertex u1
1 u1

2 u1
3 u1

4 u1
5 u1

6 u2
1 u2

2 u2
3 u2

4 u2
5 u2

6

Step 0 2 1 6 5 3 4 2 1 6 5 3 4
Step 1 4© 1 6 5 3 4 2 1 6 5 3 4
Step 2 4 2© 6 5 3 4 2 1 6 5 3 4
Step 3 4 2 1© 5 3 4 2 1 6 5 3 4

...
Step 9 4 2 1 6 5 3 4 2 1 6 5© 4
Step 10 4 2 1 6 5 3 4 2 1 3© 5 4
Step 11 4 2 1 6 5 3 4 2 6© 3 5 4

...
Step 19 2© 1 6 3 5 4 2 1 6 3 5 4

Table 4: Step by step transformation of two symmetric 6-colorings α1, α2 that differ by one
transposition on a 3-path

22

vertex. Figure 11 shows the implementation of Algorithm 2 to the intermediate coloring γ.
Figure 11(a) is the coloring γ. Figure 11(b), (c), (d) show the coloring obtained after each
iteration of the loop of the clique-recoloring, consecutively from the left (see Table 3 for more
details about clique-recoloring)

w2w1 w3

(a)

(b)

2 5 6 7 8 9 5 6 7 8 94 1 3 3 4 2 15 6 7 8 9143 2

5 6 7 8 95 6 7 8 9 2 13 4 15 6 7 8 9 2 4 1 343 2

Figure 10: Transforming an almost symmetric 9-coloring into an intermediate 9-coloring on
a 5-path

w2w1 w3

(a)

(b)

(c)

(d)

13 4 5 6 7 8 9 143 2 5 6 7 8 9 24 1 35 6 7 8 9 2

5 6 7 8 91 2 3 13 44 5 6 7 8 9 15 6 7 8 9 24 1 3

5 6 7 8 9 5 6 7 8 945 6 7 8 91 2 3 13 44 1 2 3 4

5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4

Figure 11: Transforming an intermediate 9-coloring into a symmetric 9-coloring on a 5-path

Example A.5. Consider 3-path on 12 vertices having 6-symmetric coloring α, and β with
block pattern (2, 1, 6, 5, 3, 4) and (6, 2, 1, 4, 3, 5) respectively. Hence we can transform α into
β by a sequence of transformation of symmetric colorings:

α = α0 → α1 → α2 → α3 → α4 → α5 = β

where: α = α0 = (2, 1, 6, 5, 3, 4); α1 = (2, 6, 1, 5, 3, 4); α2 = (6, 2, 1, 5, 3, 4); α3 = (6, 2, 1, 5, 4, 3);
α4 = (6, 2, 1, 4, 5, 3); α5 = (6, 2, 1, 4, 3, 5) = β. In this example, each transformation needs at
most 2n steps (by using the method as in Example A.3). Hence to transform α into β, we
need at most 5(2n) = 10n < 36n = k2n.

Example A.6. In Figure 12, the block wi−1,wi are parts of the 4-path G, and the number
of colors is 7. Assume that vertex ui−1

4 of wi−1 has been colored with its targer color 4, and
our goal is to recolor ui−1

5 with 5. This is a counter-example of Case 1 of Lemma 3.4. As we
can see in the figure, the vertices between ui−1

7 and ui5 (which are colored with 5), namely
ui1, ui2, and ui3 of wi are frozen, and we do not want to recolor any vertex of the d-suffix of
wi. Hence, the argument of Case 1 does not hold in this case.

frozen

4 7 3 2 1 4 5 6 7126 5 6
wRwL

Figure 12: Counter example of Remark 3.5

Example A.7. Let we have a 3-tree with branches at a vertex uX2 of the block wX as shown
in Figure 13. The tree is initially colored with an almost symmetric 7-coloring and we aim to

23

transform it into a symmetric 7-coloring. In Figure 13 we give a step-by-step transformation
of transforming the almost symmetric 7-coloring into an intermediate 7-coloring. Meanwhile
in Figure 14 we give a step-by-step transformation of transforming the intermediate 7-coloring
into a symmetric 7-coloring. In each figure, the numbers in red indicate the corresponding
vertices that are recolored in that step, ant the encircled numbers indicate that we skip the
corresponding vertices during the recoloring.

Step-by-step transformation of Figure 13

(a) G is initially colored with an almost symmetric 7-coloring. Remember that in applying
Algorithm 1, our restriction is that for every block wi, we can not recolor vertex uik
with k − d (in this example, we can not recolor ui7 with 4). Moreover, if (ui−1

k−d, u
i
1) is a

disturbing pair, then we have to skip the vertex ui1.

(b) The coloring of G after applying Algorithm 1 up to the block wX+1 of both paths. We
skip vertex uX+1

1 in path P1 because uX7 can not be recolored with 4 in the next step.

(c) Now we will recolor the block wX . Apply Algorithm 1 on the block wX , remember that
when recoloring vertex uX2 , the color that we will use must be uX2 -free in both paths.
Hence, ”free” the color 3 in wX of P1. As 3 must be uX2 -free in wX of P2, so skip the
recoloring of uX3 of P2. By this way, 3 is uX2 -free in P2, and we can recolor uX2 with 3.

(d) Apply Algorithm 1 on the block wX−1 up to vertex uX−1
4 . Now G is colored with an

intermediate 7-coloring.

Step-by-step transformation of Figure 14

(a) Now we will transform the coloring into a symmetric coloring. The figure shows the
coloring of G after applying Algorithm 2 to the block wX−1. Now the pattern of wX−1

becomes (1, 2, 3, 4, 5, 6, 7).

(b) Now we will recolor the branches, namely block wX . As the vertices of 5-suffix of wX

agree in both paths, then we apply directly the clique-recoloring on 3-prefix of the block,
continued by right chain (as in Algorithm 2

(c) The coloring of G after applying Algorithm 2 to the block wX+1 of both paths. Now
G is colored with a symmetric 7-coloring with block pattern (1, 2, 3, 4, 5, 6, 7).

Example A.8. We provide another example of recoloring a branch of a 5-tree G, as shown in
Figure 15. Let the tree branches at vertex uX2 of the block wX , and it is initially colored with
an almost symmetric coloring α as shown in Figure 15(a). We aim to transform the coloring
into symmetric coloring. e will first transform into an intermediate 9-coloring, followed by
the transformation into a symmetric 9-coloring. The steps of transformation is described
below. The readers can refer to Figure 15. In each figure, the numbers in red indicate the
corresponding vertices that are recolored in that step.

(a) G is initially colored with an almost symmetric 9-coloring. Our restriction is that for
every block wi, we can not recolor ui9 with 4, and if (ui−1

k−d, u
i
1) is a disturbing pair, then

we have to skip the vertex ui1.

(b) The coloring of G after applying Algorithm 1 up to the block wX+1 of both paths. We
skip vertex uX+1

1 because (uX4 , u
X+1
1) is a disturbing pair.

(c) Now we will recolor the block wX , by applying Algorithm 1. Note that we have to
skip vertex uX2 , because (uX−1

4 , uX1) is a disturbing pair and uX2 is curently colored with
4. Moreover, note that when recoloring vertex uX1 , the color that we will use must be
uX1 -free in both paths. Hence, ”free” the color 3 in wX of P1. As 3 must be uX1 -free in
wX of P2, so skip the recoloring of uX3 of P2. By this way, 3 is also uX1 -free in P2, and
we can recolor uX1 with 3.

24

(d) The coloring of G after applying Algorithm 1 to the block wX−1 up to vertex uX−1
4 .

Now G is colored with an intermediate 9-coloring.

(e) Now we will transform the coloring into a symmetric coloring. The figure shows the
coloring of G after applying Algorithm 2 to the block wX−1. Now the pattern of wX−1

becomes (1, 2, 3, 4, 5, 6, 7, 8, 9).

(f) Now we will recolor the branches, namely block wX . We first make the vertices of
7-suffix of wX agree in both paths. The figure shows the coloring of G after applying
the clique-recoloring on the vertices

{
uX3 , u

X
4

}
.

(g) The coloring of G after applying Algorithm 2 to the block wX . Now the pattern of wX

becomes (1, 2, 3, 4, 5, 6, 7, 8, 9) in both paths.

(h) The coloring of G after applying Algorithm 2 to the block wX+1 of P1. Now G is colored
with a symmetric 9-coloring with block pattern (1, 2, 3, 4, 5, 6, 7, 8, 9).

25

4 2 1 3 5 6 7 1 2

3 4

4 3 P2

P15 6 7 4 3 5 62 1

5 6 7 1 2

. . .

. . .

wX wX+1

wX+1wX

wX−1

3 4 7

7

65

4 2 1 3 5 6 7 1 2

3 4

4 3 P2

P15 6 7

5 6 7

. . .

. . .

wX wX+1

wX+1wX

wX−1 5 62

6 73 5

1

4

71

4

4

2

4 2 1 3 5 6 7 2 3

P2

P13 . . .

. . .

wX wX+1

wX+1wX

wX−1

4 5 6 7 1

4 5 6 7 5 62 1714

6 73 5 442

4 2 1 2 3

P2

P13 . . .

. . .

wX wX+1

wX+1wX

wX−1

4 5 6 7 1

4 5 6 7 5 62 1714

6 73 5 442

5 6 7 1

(a)

(b)

(c)

(d)

Figure 13: Step-by-step transformation of an almost symmetric 7-coloring into an intermedi-
ate 7-coloring on a 3-tree

(a)

(b)

(c)

1 2 3 2 3

P2

P13 . . .

. . .

wX wX+1

wX+1wX

wX−1

4 5 6 7 1

4 5 6 7 5 62 1714

6 73 5 442

5 6 74

1 2 3 1 2

P2

P1. . .

. . .

wX wX+1

wX+1wX

wX−1

3

3 5 62 1714

6 73 5 442

5 6 74

5 6 7

5 6 74

4

1 2 3 1 2

P2

P1. . .

. . .

wX wX+1

wX+1wX

wX−1

3

3

5 6 74

5 6 7

5 6 74

4

1 2 3 5 6 74

1 2 3 5 6 74

Figure 14: Step-by-step transformation of an intermediate 7-coloring into a symmetric 7-
coloring on a 3-tree

26

4 1 3 2 5 6 7 8 9 2 4

3 1 5 6 7 8 9

1 3 6 7 8 9

wX−1

wX

wX

1 3 5 6 7 8 92 4

wX+1

P1

P2

(a)

5

4 1 3 2 5 6 7 8 9 3 4

5 1 6 7 8 9 3

1 5 7 8 9

4 1 2 5 6 7 8 9 2 3 4

5 1 6 7 8 9

1 5 7 8 9 1

1 2 3 4 5 6 7 8 9 3 4

5 1 6 7 8 9

1 5 7 8 9 1

1 2 3 4 5 6 7 8 9 3 4

1 5 6 7 8 9 3

1 5 7 8 9 1

1 2 3 4 5 6 7 8 9 1 2

3 4 5 6 7 8 9

3 4 6 7 8 9

1 2 4

3 1 2 4

3 1 2 4

1 2 4

1 2 4

2 3 4 5 6 7 8 9 1 2

3 4 5 6 7 8 9

3 4 6 7 8 9

1 2 3

wX−1

wX−1

wX−1

wX−1

wX−1

wX−1

wX

wX

wX

wX

wX

wX

wX

wX

wX

wX

wX

wX

wX+1

wX+1

wX+1

wX+1

wX+1

wX+1

P1

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P2

(c)

(d)

(e)

(f)

(g)

(h) 1

5 6 7 8 9 2

5 6 7 8 9

5 6 7 8 9 2

5 6 7 8 9 2

4

5 6 7 8 9 2

5 6 7 8 9 2

6

6

6

6

5

5

1

4 1 3 2 5 6 7 8 9 2 4

3 1 5 6 7 8 9

1 3 6 7 8 9

wX−1

wX

wX

1 2 6 7 8 9 24 5

wX+1

P1

P2

(b)

5

Figure 15: Step-by-step transformation of an almost symmetric 9-coloring into a symmetric
9-coloring on a 5-tree

27

